7
31
2013
1

【BZOJ2661】【BeiJing wc2012】连连看【费用流+gcd】



program p2661;
	type
		bian=record
			next,point,w,f:longint;
		end;
	var
		d,p,after:array[0..5000] of longint;
		x:array[1..500000] of longint;
		pd:array[0..5000000] of boolean;
		b:array[0..40000] of bian;
		tot,len,a,c,i,j:longint;
	procedure ade(k1,k2,k3,k4:longint);
		begin
			inc(len);
			b[len].point:=k2;
			b[len].next:=p[k1];
			b[len].f:=k3;
			b[len].w:=k4;
			p[k1]:=len;
		end;
	procedure add(k1,k2,k3,k4:longint);
		begin
			ade(k1,k2,k3,k4);
			ade(k2,k1,0,-k4);
		end;
	function gcd(k1,k2:longint):longint;
		begin
			if k2=0 then exit(k1);
			exit(gcd(k2,k1 mod k2));
		end;
	function min(k1,k2:longint):longint;
		begin
			if k1<k2 then exit(k1) else exit(k2);
		end;
	function spfa:boolean;
		var
			head,now,i,j:longint;
		begin
			head:=1; now:=0;
			fillchar(pd,sizeof(pd),false);
			fillchar(after,sizeof(after),-1);
			fillchar(x,sizeof(x),0);
			fillchar(d,sizeof(d),$3f);
			x[1]:=0; d[0]:=0; pd[0]:=true;
			while head>now do begin
				inc(now);
				i:=p[x[now]];
				while i<>-1 do begin
					j:=b[i].point;
					if (d[j]>d[x[now]]+b[i].w) and (b[i].f>0) then begin
						d[j]:=d[x[now]]+b[i].w;
						after[j]:=i;
						if pd[j]=false then begin
							pd[j]:=true;
							inc(head);
							x[head]:=j;
						end;
					end;
					i:=b[i].next;
				end;
				pd[x[now]]:=true;
			end;
			if after[c+1]=-1 then exit(false) else exit(true);
		end;
	function change:longint;
		var
			num,ans,i,j:longint;
		begin
			ans:=maxlongint;
			i:=c+1; j:=after[i];
			while j<>-1 do begin
				ans:=min(b[j].f,ans);
				i:=b[j xor 1].point;
				j:=after[i];
			end;
			num:=0; i:=c+1; j:=after[i];
			tot:=tot+ans;
			while j<>-1 do begin
				num:=num+ans*b[j].w;
				dec(b[j].f,ans);
				inc(b[j xor 1].f,ans);
				i:=b[j xor 1].point;
				j:=after[i];
			end;
			exit(num);
		end;
	function dinic:longint;
		var
			num:longint;
		begin
			num:=0;
			while spfa=true do
				num:=num+change;
			exit(num);
		end;
	function max(k1,k2:longint):longint;
		begin
			if k1<k2 then exit(k2) else exit(k1);
		end;
	begin
		readln(a,c);
		len:=-1;
		tot:=0;
		fillchar(p,sizeof(p),-1);
		fillchar(b,sizeof(b),0);
		for i:=a to c do
			for j:=a to c do
				if (trunc(sqrt(abs(i*i-j*j)))=sqrt(abs(i*i-j*j))) and (i<>j) then begin
					if gcd(trunc(sqrt(abs(i*i-j*j))),min(i,j))=1 then
						add(i,c+j,1,-i-j);
				end;
		for i:=a to c do begin
			add(0,i,1,0);
			add(i+c,c*2+1,1,0);
		end;
		c:=c*2;
		i:=-dinic;
		writeln(tot div 2,' ',i div 2);
	end.

把所有点拆成两个,做一次gcd,把所有满足条件之间的点连上边,构成一个二分图,流量为1,费用为-(x+y),求这个图的最小费用最大流,费用取反然后均除以2即可。

Category: 费用流 | Tags: | Read Count: 2145
Avatar_small
boardmodelpaper.com 说:
2023年5月18日 22:34

We are offering the PDF based on internet searches for outdated examination tests from previous years and those question banks or study materials that were downloaded and shared alone online.We are offering the pdf based on boardmodelpaper.com internet searches based on previous years' old examination tests and those question banks, and all users of BoardModelPapers may use those sample papers or Previous Paper Pdf of class-wise study material and blueprint for reference purposes only.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter

Host by is-Programmer.com | Power by Chito 1.3.3 beta | Theme: Aeros 2.0 by TheBuckmaker.com